给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
代码
暴力递归求解——超时
class Solution {
// 递归函数
public int calculate(int[][] grid,int i,int j) {
if (i == grid.length || j == grid[0].length) return Integer.MAX_VALUE;
if (i == grid.length - 1 && j == grid[0].length - 1) return grid[i][j];
return grid[i][j] + Math.min(calculate(grid,i + 1,j),calculate(grid,i,j+1));
}
public int minPathSum(int[][] grid) {
return calculate(grid,0,0);
}
}
动态规划
- 二维数组存储状态
class Solution {
// 动态规划思想
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
for (int i = m - 1;i >= 0;i--){
for (int j = n - 1;j >= 0;j--) {
if (i == m - 1 && j != n - 1) {
dp[i][j] = grid[i][j] + dp[i][j+1];
} else if (j == n - 1 && i != m - 1) {
dp[i][j] = grid[i][j] + dp[i+1][j];
} else if(j != n - 1 && i != m - 1) {
dp[i][j] = grid[i][j] + Math.min(dp[i][j+1],dp[i+1][j]);
} else {
dp[i][j] = grid[i][j];
}
}
}
return dp[0][0];
}
}
- 一维数组存储状态
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[] dp = new int[n];
for (int i = m - 1;i >= 0;i--){
for (int j = n - 1;j >= 0;j--) {
if (i == m - 1 && j != n - 1) {
dp[j] = grid[i][j] + dp[j+1];
} else if (j == n - 1 && i != m - 1) {
dp[j] = grid[i][j] + dp[j];
} else if(j != n - 1 && i != m - 1) {
dp[j] = grid[i][j] + Math.min(dp[j+1],dp[j]);
} else {
dp[j] = grid[i][j];
}
}
}
return dp[0];
}
}
- 用原数组本身存储状态,降低空间复杂度
class Solution {
public int minPathSum(int[][] grid) {
for (int i = grid.length - 1; i >= 0; i--) {
for (int j = grid[0].length - 1; j >= 0; j--) {
if(i == grid.length - 1 && j != grid[0].length - 1)
grid[i][j] = grid[i][j] + grid[i][j + 1];
else if(j == grid[0].length - 1 && i != grid.length - 1)
grid[i][j] = grid[i][j] + grid[i + 1][j];
else if(j != grid[0].length - 1 && i != grid.length - 1)
grid[i][j] = grid[i][j] + Math.min(grid[i + 1][j],grid[i][j + 1]);
}
}
return grid[0][0];
// 作者:LeetCode
// 链接:https://leetcode-cn.com/problems/minimum-path-sum/solution/zui-xiao-lu-jing-he-by-leetcode/
// 来源:力扣(LeetCode)
// 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
}
}
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 1056615746@qq.com