820、单词的压缩编码
给定一个单词列表,我们将这个列表编码成一个索引字符串 S 与一个索引列表 A。
例如,如果这个列表是 ["time", "me", "bell"]
,我们就可以将其表示为 S = "time#bell#"
和 indexes = [0, 2, 5]
。
对于每一个索引,我们可以通过从字符串 S 中索引的位置开始读取字符串,直到 “#” 结束,来恢复我们之前的单词列表。
那么成功对给定单词列表进行编码的最小字符串长度是多少呢?
示例:
输入: words = ["time", "me", "bell"]
输出: 10
说明: S = "time#bell#" , indexes = [0, 2, 5] 。
```
**提示:**
- `1 <= words.length <= 2000`
- `1 <= words[i].length <= 7`
- 每个单词都是小写字母 。
> 链接:https://leetcode-cn.com/problems/short-encoding-of-words
# 题解
## 1、排序+查找后缀串
- 可以返回一个满足结果的串
- 可以返回每个字符串的开始索引
```Java
class Solution {
public int minimumLengthEncoding(String[] words) {
Arrays.sort(words,new Comparator<String>(){
public int compare(String s1,String s2){
return s2.length() - s1.length();
}
});
// 或者
// Arrays.sort(words, (s1, s2) -> s2.length() - s1.length());
StringBuilder sb = new StringBuilder();
// int[] indexTable = new int[words.length];
for (int i = 0;i < words.length;i++) {
// 第一个字符串
if (i == 0) {
sb.append(words[i]).append("#");
// indexTable[i] = 0;
} else { // 不是第一个
// 是否包含已有的字符,该字符必须为某个单词的后缀
int index0 = findSupString(words,i);
if (index0 != -1){
int index = sb.toString().indexOf(words[index0]);
// indexTable[i] = index + words[index0].length() - words[i].length();
}else{
// indexTable[i] = sb.length();
sb.append(words[i]).append("#");
}
}
}
return sb.length();
}
private int findSupString(String[] words,int end){
int index = -1;
for (int i = 0;i < end;i++){
// 第i个单词的后缀值words[end]单词
if (words[i].endsWith(words[end])){
index = i;
break;
}
}
return index;
}
}
2、直接求最短的长度
去除后缀字符串、将剩下的字符串拼接起来。
class Solution {
public int minimumLengthEncoding(String[] words) {
Set<String> good = new HashSet(Arrays.asList(words));
for (String word: words) {
for (int k = 1; k < word.length(); ++k)
good.remove(word.substring(k));
}
int ans = 0;
for (String word: good)
ans += word.length() + 1;
return ans;
}
}
// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/short-encoding-of-words/solution/dan-ci-de-ya-suo-bian-ma-by-leetcode-solution/
3、字典树存储单词
字典树存储单词,可以很方便的查找后缀。
class Solution {
public int minimumLengthEncoding(String[] words) {
TrieNode trie = new TrieNode();
Map<TrieNode, Integer> nodes = new HashMap();
for (int i = 0; i < words.length; ++i) {
String word = words[i];
TrieNode cur = trie;
// 查找当前字符串的首字母的位置
for (int j = word.length() - 1; j >= 0; --j)
cur = cur.get(word.charAt(j));
nodes.put(cur, i);
}
// 拼接结果
int ans = 0;
for (TrieNode node: nodes.keySet()) {
if (node.count == 0)
ans += words[nodes.get(node)].length() + 1;
}
return ans;
}
}
// 字典树节点,26叉树
class TrieNode {
TrieNode[] children;
int count;
TrieNode() {
children = new TrieNode[26];
count = 0;
}
public TrieNode get(char c) {
if (children[c - 'a'] == null) {
children[c - 'a'] = new TrieNode();
count++;
}
return children[c - 'a'];
}
}
// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/short-encoding-of-words/solution/dan-ci-de-ya-suo-bian-ma-by-leetcode-solution/
字典树,插入时处理
class Solution {
public int minimumLengthEncoding(String[] words) {
int len = 0;
Trie trie = new Trie();
// 先对单词列表根据单词长度由长到短排序
Arrays.sort(words, (s1, s2) -> s2.length() - s1.length());
// 单词插入trie,返回该单词增加的编码长度
for (String word: words) {
len += trie.insert(word);
}
return len;
}
}
// 定义tire
class Trie {
TrieNode root;
public Trie() {
root = new TrieNode();
}
public int insert(String word) {
TrieNode cur = root;
boolean isNew = false;
// 倒着插入单词
for (int i = word.length() - 1; i >= 0; i--) {
int c = word.charAt(i) - 'a';
if (cur.children[c] == null) {
isNew = true; // 是新单词
cur.children[c] = new TrieNode();
}
cur = cur.children[c];
}
// 如果是新单词的话编码长度增加新单词的长度+1,否则不变。
return isNew? word.length() + 1: 0;
}
}
class TrieNode {
char val;
TrieNode[] children = new TrieNode[26];
public TrieNode() {}
}
// 作者:sweetiee
// 链接:https://leetcode-cn.com/problems/short-encoding-of-words/solution/99-java-trie-tu-xie-gong-lue-bao-jiao-bao-hui-by-s/
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 1056615746@qq.com